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Abstract
During the last few years, the phase diagram of the large N Gross–Neveu model
in 1 + 1 dimensions at finite temperature and chemical potential has undergone
a major revision. Here, we present a streamlined account of this development,
collecting the most important results. Quasi-one-dimensional condensed matter
systems like conducting polymers provide real physical systems which can be
approximately described by the Gross–Neveu model and have played some
role in establishing its phase structure. The kink–antikink phase found at
low temperatures is closely related to inhomogeneous superconductors in the
Larkin–Ovchinnikov–Fulde–Ferrell phase. With the complete phase diagram
at hand, the Gross–Neveu model can now serve as a firm testing ground for
new algorithms and theoretical ideas.

PACS numbers: 03.70.+k, 11.10.−z

1. Introduction

In its original form, the Gross–Neveu (GN) model [1] is a relativistic, renormalizable quantum
field theory (QFT) of N species of self-interacting fermions in 1+1 dimensions with Lagrangian

L =
N∑

n=1

ψ̄(n)(iγ µ∂µ − m0)ψ
(n) +

1

2
g2

(
N∑

n=1

ψ̄(n)ψ(n)

)2

. (1)

The bare mass term ∼ m0 explicitly breaks the discrete chiral symmetry ψ → γ 5ψ of the
massless model. The interaction term can be generalized to acquire a continuous chiral
symmetry as in the Nambu–Jona–Lasinio (NJL) model, but we shall not consider this option
here. As far as the phase diagram is concerned, the ’t Hooft limit N → ∞, g2 ∼ 1/N is
most instructive. The reason is the following. In 1 + 1 dimensions, classic no-go theorems
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forbid spontaneous breaking of a continuous symmetry at zero temperature or of a discrete
symmetry at finite temperature [2, 3]. Although mean-field theory often predicts these effects,
fluctuations are expected to destroy any long range order. Provided that one defines the model
by letting N → ∞ before taking the thermodynamic limit, these fluctuations are suppressed
and a richer phase structure becomes accessible [4]. We follow this line of reasoning here.

Like in a previous pedagogical review article [5] which the present paper is meant to
update, we work canonically, couching the theory in the language of the relativistic Hartree–
Fock (HF) approximation. It is formally equivalent to the semi-classical functional integral
approach but conceptually simpler. Physically, it emphasizes the fact that the Dirac sea is an
interacting many-fermion system [6, 7], thereby making it somewhat easier to switch back
and forth between the relativistic QFT and condensed matter physics literature.

Let us now briefly recall the motivation for studying the Lagrangian (1). QFT models for
which one can construct the exact renormalized phase diagram are extremely scarce and worth
investigating on theoretical grounds, even if they are far from being realistic. As a matter of
fact, in spite of its simple Lagrangian, the GN model shares many non-trivial properties with
quantum chromodynamics (QCD), notably asymptotic freedom, dimensional transmutation,
meson and baryon bound states, chiral symmetry breaking in the vacuum as well as its
restoration at high temperature and density. Perhaps even more surprising and less widely
appreciated is the fact that GN-type models have enjoyed considerable success in describing
a variety of quasi-one-dimensional condensed matter systems such as the Peierls–Fröhlich
model, conducting polymers like polyacetylene or inhomogeneous superconductors.

The title of this paper has the following background: originally, the kink and kink–
antikink baryons first derived in QFT by Dashen, Hasslacher and Neveu [8] have been useful
for understanding the role of solitons and polarons in electrical conductivity properties of
doped polymers [9]. In the following years, a lot of progress was made in condensed matter
theory towards understanding polaron crystal structures. This in turn helped us to construct
the full phase diagram of the relativistic QFT. However, in order not to confuse the issues, we
shall first discuss the GN model without reference to condensed matter physics and comment
on the relationship only towards the end.

Our last remark about the motivation concerns the restriction to 1 + 1 dimensions. At
first glance, this looks very unrealistic. However, most of the work discussed below has to
do with finite chemical potential. In the presence of a Fermi surface, a kind of dimensional
reduction takes place which has been exploited for instance in high-density effective theory
(HDET) to QCD (see [10] for a review). It also manifests itself through the well-known fact
that Cooper pairing in superconductivity occurs for arbitrarily weak attraction, just like in one
space dimension. Hence, from the physics point of view, the restriction to 1 + 1 dimensions is
perhaps a better idea in the presence of fermionic matter than naively thought.

The Lagrangian (1) has two bare parameters, g2 and m0. In the process of regularization
and renormalization, all observables can be expressed in terms of two physical parameters m
and γ . The relation to the bare quantities and the ultra-violet (UV) cut-off � is given by the
vacuum gap equation

π

Ng2
= γ + ln

�

m
, γ := π

Ng2

m0

m
. (2)

Whereas the physical fermion mass m in the vacuum merely provides the overall mass scale
and can be set equal to 1, the second parameter γ (called ‘confinement parameter’ in condensed
matter physics) parametrizes different physical theories. It measures the amount of explicit
chiral symmetry breaking and vanishes in the massless (m0 = 0) limit. Note that it can also
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be expressed in terms of the physical fermion masses at bare mass m0 and in the chiral limit,

γ = ln

(
m[m0]

m[0]

)
. (3)

The main subject of this paper is the full phase diagram of the massive GN model as a
function of temperature T, chemical potential µ and confinement parameter γ . The original
works date from 1985 for the massless [11] and 1995 for the massive case [12] (see also
[13] for earlier, partial results). As has become clear by now, the assumption that the scalar
condensate 〈ψ̄ψ〉 is spatially homogeneous made in these works is too restrictive. It misses
important physics closely related to the existence of kink–antikink baryons in the GN model.
In the present paper, we describe how this problem has been cured. This is not a small
correction, but requires a substantial new effort. A homogeneous condensate acts like a mass
and reduces the thermodynamics essentially to that of a massive, free relativistic Fermi gas,
the mass being determined self-consistently. By contrast, solving the Dirac equation with a
periodic potential and establishing self-consistency is a highly non-trivial task, even in 1 + 1
dimensions. Due to a number of lucky circumstances, this is nevertheless possible in the case
at hand, to a large extent even analytically.

In our recent papers, we had to proceed from special cases to more general ones
(treating m0 = 0 before m0 �= 0, T = 0 before T �= 0) in order to reduce the problem
to manageable size. Now that the original technical difficulties have been overcome, we invert
this chronological order. We start from the most general case, i.e., the massive GN model at
finite temperature and chemical potential, and specialize further wherever additional analytical
results or physics insights are available. In this way, we can hopefully convey a more coherent
picture of what has been learned in the meantime.

This paper is organized as follows. In section 2, we remind the reader of the state of
the art around the year 2000 and recall our criticism on the widely accepted phase diagram
of the GN model at that time. We motivate the analytical form of the correct self-consistent
HF potential in section 3 and sketch the calculation of the grand canonical potential and the
proof of self-consistency in section 4. Section 5 exhibits the revised phase diagram ‘in full
glory’. In the following four sections, we have added various results in the form of figures and
analytical formulae which have been obtained in simpler special cases, letting one or both of
the parameters T and γ go to zero. If we take the low-density limit ρ → 0 at zero temperature,
we also recover the properties of individual baryons as summarized in section 10. Section 11
contains a brief overview of the many cross-relations between the GN model as a relativistic
QFT and the theory of certain quasi-one-dimensional condensed matter systems. It is followed
by our concluding remarks in section 12.

2. Reminder of the situation five years ago

Let us briefly recall the phase diagram of the GN model as it had been widely accepted by the
year 2000. This is necessary to put the recent development into perspective. Besides, we will
see that the results remain valid in some regions of the phase diagram, including some critical
curves. The most basic quantity at finite temperature T and chemical potential µ is the grand
canonical potential. In the large N limit, it can be computed either canonically via the
relativistic HF approach or by using semi-classical functional integral methods. In the more
popular path integral approach, one introduces an auxiliary bosonic field σ and integrates
out the fermions exactly (Gaussian integral over Grassmann variables), then applies a saddle
point approximation to the remaining bosonic functional integral. In the original analysis at
γ = 0 [11] and its generalization to finite bare fermion masses [12], it has been assumed
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Figure 1. ‘Old’ phase diagram of the massless GN model, assuming unbroken translational
symmetry. For a discussion, see the main text. Units of m; adapted from [11].

that the classical value of σ (i.e., the saddle point) is spatially constant, yielding a (µ, T )-
dependent dynamical fermion mass M. This mass is found by minimizing the renormalized
grand canonical potential density

� = M2

2π

(
ln M − 1

2

)
+ γ

(
M2

2π
− M

π

)
− 1

βπ

∫ ∞

0
dq ln[(1 + e−β(E−µ))(1 + e−β(E+µ))]

(4)

(β = 1/T ,m = 1, E =
√

q2 + M2) with respect to M. Equivalently, one can solve the
self-consistency condition for the (thermal) fermion condensate,

M = m0 − Ng2〈ψ̄ψ〉th. (5)

Depending on the parameters (γ, µ, T ), � possesses one or two local minima with the
possibility of a first-order phase transition. The phase diagram in the chiral limit γ = 0 is
shown in figure 1, whereas the 3D plot in figure 2 exhibits the phase structure in the full
(γ, µ, T )-space. Let us first look at figure 1. The line AB is a critical line of second-order
transitions (the thermodynamic potential changes from one minimum to a maximum and a
minimum). The point B is a tricritical point located at 1/β = 0.3183, µ = 0.6082 (all numbers
here are in units of m); it separates the second-order line from a first-order line BD along which
the potential has two degenerate minima and a maximum. The endpoint D lies at µ = 1/

√
2

where the T = 0 phase transition occurs. Lines BC and BE are boundaries of metastability;
when crossed, the potential acquires or loses a second minimum. In region OABD, chiral
symmetry is broken and the fermions are massive; the outside region has unbroken chiral
symmetry and massless fermions. As the parameter γ is switched on, the second-order line
AB disappears in favour of a cross-over where the fermion mass changes rapidly, but smoothly.
The first-order line on the other hand survives, ending at a critical point. If plotted against γ ,
these critical points lie on the third curve PtC emanating from the tricritical point as shown
in figure 2. For γ > 0, the effective fermion mass M is everywhere different from zero. If
one crosses the shaded critical ‘sheet’ in figure 2, the mass changes discontinuously, dropping
with increasing chemical potential.

These results looked rather convincing and indeed have been confirmed repeatedly by
other authors, see e.g. [15, 16]. Nevertheless, they suffer from one disease which was pointed
out in [5]. The GN model possesses baryons (multi-fermion bound states) due to binding
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Figure 2. ‘Old’ phase diagram of the massive GN model as a function of γ, µ, T , assuming
unbroken translational symmetry [12, 14, 30]. The various phase boundaries are explained in the
main text. The γ = 0 plane corresponds to figure 1, the tricritical point Pt to the point B there.

effects which are not 1/N suppressed. Consider the low-density limit of baryonic matter at
T = 0. Since the baryon–baryon interaction is known to be short ranged and repulsive, one
expects widely spaced baryons in the low-density limit, implying the following slope of the
energy density at the origin:

∂E
∂ρ

∣∣∣∣
ρ=0

= MB. (6)

Here, MB is the baryon mass. Conversely, since equation (6) is just the chemical potential at
T = 0, the phase transition at T = 0 should occur at the critical chemical potential µ = MB .
The phase diagrams in figures 1 and 2 are in conflict with this expectation. At γ = 0, for
instance, the first-order phase transition takes place at µ = 1/

√
2, whereas the baryon mass

is MB = 2/π (always taking out a trivial factor of N). At the time of writing the article [5], it
was already clear that the problem had to do with the assumption of translational invariance.
Indeed, if the single baryon breaks translational invariance, there is no good reason why this
symmetry should not be broken at finite baryon densities as well. (One can actually understand
the value of 1/

√
2 of the critical chemical potential in terms of a droplet model for baryons,

characteristic for the mixed phase at low density. The argument which was first developed in
the context of the GN model with continuous chiral symmetry [17] applies here as well.)

Incidentally, a related observation had already been made in 1987 by Karsch et al whose
numerical lattice calculation gave first hints that kink–antikink configurations play a role in
the phase diagram at low density [18]. However, the authors concluded erroneously that
there was a problem with the mean-field approach, an opinion which has often been voiced
in the literature since then. This calculation was too crude to determine the phase diagram
quantitatively, in particular the statements about the order of the phase transitions are no longer
tenable, as we now know.

Unfortunately, it is not easy to relax the assumption of a constant potential, since this
requires a major new effort. This can already be judged from the rather involved single baryon
problem [8] which must be contained as a limit in the full calculation. Which potential S(x)
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should replace the constant mass M so as to cure the aforementioned discrepancy? This will
be answered in the next section.

3. How to choose the right ansatz for the scalar potential

Our strategy within the relativistic HF approach is extremely simple in principle: guess the
functional form of the HF potential and verify its self-consistency. At finite density, we
expect the appearance of a regular array of baryons, hence we will be searching for periodic
solutions. But what guidance do we have to pick the right ansatz? Is there any reason at all to
assume that the exact potential can be given in closed analytical form? The following heuristic
considerations should be of some help.

Owing to the (ψ̄ψ)2-interaction in the Lagrangian (1), the Dirac–HF equation for the GN
model assumes the form(

−iγ 5 ∂

∂x
+ γ 0S(x)

)
ψ(x) = Eψ(x) (7)

with real scalar potential S(x). The representation

γ 0 = −σ1, γ 1 = iσ3, γ 5 = γ 0γ 1 = −σ2 (8)

of the γ -matrices has the advantage that the equations for the upper and lower components φ±
of the Dirac spinor ψ can be decoupled by simply applying the Dirac Hamiltonian twice,(

− ∂2

∂x2
∓ ∂

∂x
S + S2

)
φ± = E2φ±. (9)

Equation (9) states that the Schrödinger-type Hamiltonians with potentials U± = S2 ± S ′

have the same spectra, a textbook example of supersymmetric quantum mechanics with
superpotential S. S(x) in turn depends on the eigenfunctions ψα and eigenvalues Eα through
a self-consistency relation

− 1

Ng2
(S(x) − m0) = 〈ψ̄ψ〉th =

∑
α

ψ̄α(x)ψα(x)
1

eβ(Eα−µ) + 1
. (10)

It generalizes equation (5) to an x-dependent scalar potential.
Let us first recall the results for single baryons in the massive GN model [19, 20]. The

scalar potential for a baryon has the form

S(x) = 1 + y[tanh(yx − c0) − tanh(yx + c0)], c0 = 1
2 artanhy. (11)

The parameter y depends on the bare fermion mass and the number of valence fermions. Here,
the corresponding isospectral potentials U± in the second-order equation (9) are given by the
simplest Pöschl–Teller potential [21]

S2 ± S ′ = − 2y2

cosh2(yx ± c0)
(12)

and differ only by a translation in space. The distinguishing feature of potential (12) is the fact
that it is reflectionless; indeed, this is the unique reflectionless potential with a single bound
state. It is well known that static solutions of the GN model must correspond to reflectionless
Schrödinger potentials [8, 22]. The fact that the ansatz (11) leads to self-consistency is
therefore quite plausible.

Take now a lattice of infinitely many, equidistant Pöschl–Teller potential wells. As pointed
out in [23, 24], the lattice sum can be performed yielding a Lamé-type potential,

∞∑
n=−∞

1

cosh2(x − nd)
=

(
2κK′

π

)2 {
E′

κ2K′ − sn2

(
2K′

π
x

)}
. (13)
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(K, E denote complete elliptic integrals of first and second kinds, K′, E′ the complementary
ones with argument κ ′ = √

1 − κ2, sn a Jacobi elliptic function of modulus κ). Comparing
the spatial period of both sides of equation (13), we can relate d and κ via

d = π
K
K′ . (14)

How does the fact that the single potential wells (12) are reflectionless manifest itself in
the periodic extension (13)? This has been answered long time ago [25, 26]: the periodic
potential has a single gap (or, in general, a finite number of gaps), in contrast to generic periodic
potentials with infinitely many gaps. Thus, reflectionless potentials generalize to ‘finite band
potentials’ as one proceeds from a single well to a periodic array. In the same way as the
sech2-potential is the unique reflectionless potential with one bound state, the sn2-potential is
the unique single band potential. Guided by these considerations, let us try to find the most
general superpotential of the (single gap) Lamé potential. After a scale transformation

S(x) = AS̃(ξ), ξ = Ax, (15)

U±(x) = A2Ũ±(ξ) should assume the form of the Lamé potential plus constant, up to a
possible shift of the rescaled coordinate (ξ+ = ξ + b),

Ũ+ = S̃2 + S̃ ′ = 2κ2sn2ξ+ + η, Ũ− = S̃2 − S̃ ′ = 2κ2sn2ξ + η, (16)

or, equivalently,

S̃2 = κ2(sn2ξ+ + sn2ξ) + η, S̃ ′ = κ2(sn2ξ+ − sn2ξ). (17)

Let us try to solve equations (17) for S̃ and η. We differentiate the first equation (17) using

(sn ξ)′ = cn ξ dn ξ (18)

and divide the result by the second equation, obtaining

S̃(ξ) = sn ξ+cn ξ+dn ξ+ + sn ξcn ξdn ξ

sn2 ξ+ − sn2 ξ
. (19)

By specializing equation (17) to ξ = 0, we can also determine the constant η

η = 1

sn2b
− 1 − κ2. (20)

Incidentally, S̃ can be cast into the somewhat simpler form

S̃(ξ) = κ2sn b sn ξsn (ξ + b) +
cn b dn b

sn b
. (21)

The scale factor A in equation (15) is not constrained by these considerations, so that the
final answer for S(x) depends on three real parameters A, κ, b. Thus, we conclude that the
potential (15, 19) is the most general Dirac potential leading to a single gap Lamé potential
(plus constant) in the corresponding second-order equations. This explains why it is a good
starting point for finding periodic, static solutions, and has turned out to be the key to the
phase diagram of the massive GN model. Incidentally, we did not derive the ansatz for S(x)

in this way originally, but took it over from a mathematically closely related problem which
had already been solved in condensed matter physics, the bipolaron crystal in non-degenerate
conducting polymers. We will have more to say about this relationship in section 11. Also
note that the simple and intuitive relation between the single baryon and the crystal exhibited
in equation (13) is deeply hidden in the corresponding Dirac potentials (11) and (15), (19) due
to the nonlinear, non-local relationship between S and U±.
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Figure 3. The dispersion relation of the Lamé potential for κ = 0.8, showing a single gap;
ω = E/A and p = q/A are (reduced) energy and Bloch momentum, respectively (from [28]).

Inserting our ansatz into equation (9), we arrive by construction at the single gap Lamé
equation in the form(

− ∂2

∂ξ 2
+ 2κ2sn2(ξ + (b ∓ b)/2)

)
φ± = Eφ±. (22)

Using equation (20), the relation between Dirac eigenvalues E and Lamé eigenvalues E is

E = E2

A2
− 1

sn2b
+ 1 + κ2. (23)

The solutions of equation (22) are well known since [27]. The eigenfunctions are fairly
complicated, although they can still be given in closed form,

φ+(ξ) = N
H(ξ + α)

�(ξ)
e−Z(α)ξ . (24)

Here, H, � and Z are the Jacobi eta, theta and zeta function, respectively. The parameter α is
related to the energy and Bloch momentum. An example of the dispersion relation is shown
in figure 3.

The fact that S(x) is a finite band potential is important for getting self-consistency. At
the same time, it makes the problem analytically tractable. Of course, at this point one cannot
be sure that the simplest finite band potential is sufficient to solve the massive GN model at
all temperatures and chemical potential, but this is what eventually will come out.

4. Minimizing the grand potential and self-consistency condition

Having picked the ansatz for the scalar potential S(x), we now have to minimize the grand
potential with respect to the three parameters A, κ, b and verify that it implies self-consistency
of the ψ̄ψ-condensate. In HF approximation, the grand canonical potential density per flavour
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consists of the independent particle contribution �1 and the double-counting correction to the
interaction �2,

� = �1 + �2, �1 = − 1

βπ

∫ �/2

0
dq ln[(1 + e−β(E−µ))(1 + eβ(E+µ))],

�2 = 1

2Ng2�

∫ �

0
dx(S(x) − m0)

2, � = 2K/A

(25)

(in the path integral approach, �1 and �2 correspond to the fermion determinant and the tree
level term, respectively). �/2 is an UV cut-off which will eventually be sent to infinity, � is
the spatial period of S(x), E is the single particle energy.

In �2, we need the spatial averages of S and S2. It is convenient to introduce three basic
functions of b and κ ,

s = 1

sn2b
, t = cn b dn b

sn3b
, u = 1 − E

K
, (26)

where s and t are related by

t2 = s(s − 1)(s − κ2). (27)

The spatial averages can then be written in the compact form

〈S〉 = A(Z + t/s), 〈S2〉 = A2(s − 1 + 2u − κ2) (28)

with Jacobi’s zeta function Z = Z(b, κ).
Turning to �1, let us first transform the momentum integral into an integral over Dirac

energies. The density of states for the Lamé potential [29] implies a change of integration
measure (p = q/A,ω = E/A)

dp

dω
= ω(ω2 − s + u)

±√
W

, W = (ω2 − s + 1)(ω2 − s + κ2)(ω2 − s), (29)

where the plus sign refers to the upper band, the minus sign to the lower band. With the
shorthand notation

a = βA, ν = µβ, (30)

�1 can be written as the following integral over the allowed bands:

πβ2�1 = −a

(∫ √
s−κ2

√
s−1

dω +
∫ �ω

√
s

dω

)
dp

dω
ln[(1 + e−aω+ν)(1 + eaω+ν)]. (31)

The energy cut-off �ω has to be computed from the momentum cut-off �/2 and
equation (29),

�ω = �

2A
+

A〈S̃2〉
�

+ O(�−3). (32)

Due to the quadratic divergence of the integral, it is necessary to keep the next-to-leading order
term here. Following references [28, 30], we combine the integral over both energy bands
as well as over positive and negative energy modes into the real part of a line integral in the
complex ω-plane. The path of integration runs infinitesimally above or below the real axis,

πβ2�1 = −a lim
ε→0

Re
∫ ∞+iε

−�ω+iε
dω

ω(ω2 − s + u)√
W

ln(1 + e−aω+ν). (33)

We have to minimize � with respect to A, b, κ for fixed µ, β, γ , a rather tedious task at first
glance. In order to simplify the computations, we use the freedom to minimize � with respect
to any other set of independent variables. Specifically, we propose to replace A, b, κ by the
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spatial averages 〈S〉, 〈S2〉 and the spatial period � of S, see equations (25) and (28). It turns out
that these variables are extremely convenient for the proof of self-consistency. The stationarity
conditions for the grand potential then read

∂

∂〈S〉πβ2� = βF0 = 0,
∂

∂〈S2〉πβ2� = β2F1/2 = 0,
∂

∂�
πβ2� = a2F2/� = 0,

(34)

where we have introduced functions Fi which play a key role in our approach. The derivatives
with respect to the new, composite variables can be taken trivially in the case of �2 since

�2 = 1

2Ng2

(〈S2〉 − 2m0〈S〉 + m2
0

)
. (35)

Unfortunately, this is not true for �1 available only in terms of the original variables A, b, κ

in equation (33). In order to compute Fi , we therefore invoke the chain rule,
∂b

∂A

∂κ


 πβ2� =


∂b〈S〉 ∂b〈S2〉 ∂b�

∂A〈S〉 ∂A〈S2〉 ∂A�

∂κ〈S〉 ∂κ〈S2〉 ∂κ�





 βF0

β2F1/2
a2F2/�


 . (36)

Upon evaluating and inverting the Jacobian matrix on the right-hand side of equation (36), Fi

can be expressed in terms of directly computable derivatives of �. After some algebra [30],
we arrive at

F0 = −πβm0

Ng2
− tRe lim

ε→0+

∫ ∞+iε

−∞+iε
dω

(
∂

∂ω

1√
W

)
ln(1 + e−aω+ν),

F1 = π

Ng2
− 1 +

1

a
Re lim

ε→0+

∫ ∞+iε

− �β

2a
+iε

dω

(
∂

∂ω

ω2

√
W

)
ln(1 + e−aω+ν),

F2 = 1

a
Re lim

ε→0+

∫ ∞+iε

−∞+iε
dω

[
ω(ω2 − s + u)√

W

− ∂

∂ω

tZ − uω2 + (ω2 − s + 1)(ω2 − s + κ2)√
W

]
ln(1 + e−aω+ν).

(37)

All three functions Fi vanish at the minimum of the thermodynamic potential (25).
Equations (33), (35) and (37) are the basis for our computations. They are not yet in a

form suitable for numerical calculations since they still involve bare parameters and a cut-off,
but the present form is illuminating with respect to self-consistency. We therefore first turn to
the issue of self-consistency.

The self-consistency condition for the scalar potential S(x) was given in equation (10).
For a single mode, ψ̄ψ reads [31]

ψ̄ψ = ωS̃ − t/ω

ω2 − s + u
. (38)

We transform the thermal expectation value of ψ̄ψ once again into a complex integral,

〈ψ̄ψ〉th = 1

π

∫ �/2

0
dq ψ̄ψ

(
1

eβ(E−µ) + 1
− 1

e−β(E+µ) + 1

)

= A

π
Re lim

ε→0+

∫ ∞+iε

− �β

2a
+iε

dω
ω2S̃ − t√

W

1

eaω−ν + 1
. (39)

A partial integration (picking up a boundary term) then enables us to express the thermal
expectation value in terms of the functions F0, F1 introduced above,

〈ψ̄ψ〉th = S(x)

π

(
F1 − π

Ng2

)
+

F0

πβ
+

m0

Ng2
. (40)
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In the minimum of the grand canonical potential, F0 and F1 vanish. This reduces equation (40)
to equation (10), thereby establishing exact self-consistency of the scalar condensate.

We now comment on the practical procedure to determine the phase diagram and
thermodynamics of the massive GN model within this framework. First, we have to eliminate
the bare parameters Ng2,m0 and the cut-off � in the standard way. Since all UV divergences
are due to vacuum effects, there are no new difficulties as compared to the T = 0 case. All
we need is the vacuum gap equation

1

Ng2
= 1

π
(1 + m0) ln � = 1

π
(ln � + γ ). (41)

The dynamical fermion mass in the vacuum (set equal to 1) and the confinement parameter γ

are physical parameters which are kept fixed while one lets Ng2 → 0,m0 → 0 and � → ∞.
Irrelevant divergent terms −�2/8π and −µ�/2π from the energy and baryon density of
the Dirac sea can simply be dropped. An expression for the renormalized grand canonical
potential in which the limit � → ∞ can safely be taken is

πβ2�ren = lim
�→∞

[
�2β2

8
+

a2〈S̃2〉
2

(ln � + γ − 1) − aβγ 〈S̃〉

− aRe lim
ε→0+

∫ �β

2a
+iε

− �β

2a
+iε

dω
ω(ω2 − s + u)√

W
ln

(
2 cosh

aω − ν

2

) ]
. (42)

In principle, we have to solve the three equations Fi = 0 simultaneously. It is
worthwhile to examine more closely the way in which Fi depend on the six relevant parameters
(a, b, κ, γ, ν, β), since this suggests a simpler strategy of how to minimize �. We first note
that F2 is a convergent integral which does not require any regularization or renormalization.
Since F2 depends neither on γ nor on β, the equation

F2(a, b, κ, ν) = 0 (43)

can be solved for a, say, for given b, κ, ν. Now let us focus on the γ, β dependence of the
other two equations. F0 is also free of divergences. All we have to do here is to replace the
ratio of bare parameters πm0/Ng2 by γ . The equation F0 = 0 is then turned into

γβ = atI0(a, b, κ, ν), (44)

where I0 can be inferred from equation (37). The integral in F1, on the other hand, has a
logarithmic divergence at the lower integration limit. Isolating the divergence and eliminating
1/Ng2 with the help of the gap equation (41), the ln � terms are cancelled and the equation
F1 = 0 assumes the form

γ − ln β = I1(a, b, κ, ν). (45)

Equations (44) and (45) can be combined into

γ + ln γ = I1 + ln(atI0), β = atI0/γ. (46)

The first of these equations can be solved for γ , the second one then yields an explicit
expression for β. In total, we have reduced the problem of finding the minimum of a function
of three variables to the simpler problem of finding the zeros of two functions of one variable
each.

Throughout this section, we have made use of complex integration so as to exhibit the
formal structure of various expressions and the self-consistency in the most transparent way.
In order to actually compute the one-dimensional numerical integrals in � and in Fi , it is
advisable to convert the integrals back to standard real integrals over the allowed energy
bands. For more technical details and explicit expressions for I0, I1, F2, we refer the reader
to [30].
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5. The full phase diagram of the Gross–Neveu model

In the previous section, we have outlined how to minimize the grand canonical potential
given the three-parameter ansatz for S(x). This can be used to evaluate bulk thermodynamic
observables for any given T ,µ and γ . In the present section, we turn to the structure of the
phase diagram, including the location of the phase boundaries, the order of the transitions and
the symmetries of the various phases. The following considerations have proven useful for
this purpose. We expect phase transitions between a crystal phase and a homogeneous phase
where S(x) = M is constant. In the chiral limit, we can further distinguish between a chirally
restored phase (M = 0) and a massive, chirally broken phase (M > 0). We therefore first
need to understand for which choice of parameters S(x), equations (15), (19), goes over into
a constant. The elliptic modulus κ varies between 0 and 1. At the two boundaries of this
interval, we find

lim
κ→0

S̃ = cot b, lim
κ→1

S̃ = coth b + tanh ξ − tanh(ξ + b). (47)

The first limit is a constant, the second describes the single baryon profile. Clearly, both
limits are relevant for phase boundaries where S̃ goes over from a periodic function in the
crystal phase to a constant one in the massive Fermi gas phase (M = A cot b or A coth b,
respectively). As far as b is concerned, important special values are b = 0 and b = K with

lim
b→0

bS̃ = 1, lim
b→K

S̃ = κ2 sn ξ cn ξ

dn ξ
. (48)

The value b = 0 is the only value of b where κ = 0 and κ = 1 can coexist and therefore
plays a prominent role in the phase diagram. In the chiral limit, b takes on the value K. If
we let b → K and κ → 0 simultaneously, S̃ vanishes and we can connect the crystal phase
continuously to a chirally restored phase.

These observations are the key for computing the phase boundaries separating the crystal
phase from the Fermi gas. Evidently, they are only applicable if the phase transitions are
continuous, but this is indeed what we find. For κ = 0 or 1, the functions Fi further simplify,
so that the actual computation along the lines described in section 4 is quite manageable.
We have computed lines of constant b and constant ν, since this is most easily done in our
scheme. For each value of κ , a certain (b, ν)-grid is mapped onto a two-dimensional surface
in (γ, µ, T )-space by minimizing the grand potential. The resulting curved surface represents
a second-order phase boundary.

We now turn to the numerical results, starting with the chiral limit γ = 0 and focusing on
the phase boundaries. These are depicted in figure 4 which supersedes figure 1. The second-
order line AB of the old phase diagram is unaffected. The first-order line BD of figure 1
is replaced by two second-order lines delimiting a novel kink–antikink crystal phase. The
tricritical point B is turned into another kind of multicritical point labelled PL in figure 4,
located at precisely the same (µ, T ) values. As we switch on γ (figure 5), the second-order
line separating massive (M > 0) and massless (M = 0) phases disappears as a consequence
of the explicit breaking of chiral symmetry. The crystal phase survives at all values of γ , but
is confined to decreasing temperatures with increasing γ . For fixed γ , it is bounded by two
second-order lines joining in a cusp. The cusp coincides with the critical point of the old phase
diagram but has once again a significantly different character. The crystal phase exists and
is thermodynamically stable inside the tent-like structure formed out of two sheets denoted
as I and II. These sheets are defined by κ = 0 (I) and κ = 1 (II), respectively. The line PtC
where they join corresponds to b = 0 and coincides with line PtC in figure 2. The baseline of
sheet II in the (µ, γ )-plane has a simple physical interpretation: it reflects the γ -dependence
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Figure 4. Phase diagram of the GN model in the chiral limit [28, 32]. All phase boundaries
correspond to second-order transitions.
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Figure 5. Revised phase diagram of the massive Gross–Neveu model [14, 30]. The shaded surfaces
I, II separate the kink–antikink crystal from a massive Fermi gas and correspond to second-order
phase transitions. The γ = 0 plane is the same as figure 4.

of the baryon mass in the massive GN model or, equivalently, the critical chemical potential
at T = 0. The chiral limit γ → 0 can be identified with b → K.

Another view of the phase diagram is displayed in figure 6. Here, we plot the phase
boundaries in the (µ, T )-plane for several values of γ . These two-dimensional graphs
correspond to cutting the three-dimensional graph in figure 5 by (equidistant) planes γ =
constant. They provide a better view of how the two critical lines are joined in a cusp and
exhibit that the region in which the crystal is thermodynamically stable shrinks with increasing
bare fermion mass.

The cusp line where the sheets I and II are glued together can be determined by taking
the limit b → 0 in Fi . As discussed above, in this limit the scalar potential becomes both
homogeneous and κ-independent. One can show analytically that the resulting equations
Fi = 0, for i = 0, 1, 2, are equivalent to the conditions � ′ = 0, � ′′ = 0, � ′′′ = 0 (′= ∂M) for
the translationally invariant calculation [12]. Hence, the curve b = 0 in the new phase diagram
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Figure 6. Two-dimensional sections γ = const through the phase diagram of figure 5. The fat
lines belong to γ = 0, the thin lines to γ = 0.1, 0.2, . . . , 1.2, from top to bottom. The position of
the cusp agrees with the critical point in the old phase diagram. From [30].

coincides with the line of critical points of the old phase diagram. One can also convince
oneself that the critical first-order phase transition sheet shown in figure 2 is tangential to both
sheets I and II along the line of endpoints.

6. Ginzburg–Landau theory near the tricritical point

In the vicinity of the tricritical point Pt, we can derive a Ginzburg–Landau effective action
by expanding �ren in a = βA [28, 30]. Since S(x) is both weak and slowly varying there,
this could also be obtained approximately without knowing the exact solution. Here, we turn
things around and derive it via a Taylor expansion from the full expression. This should help
to understand the character of the multicritical point.

We therefore start with an expansion of �ren in equation (42) in powers of a,

πβ2�ren = −ν2

2
− π2

6
− γβ2〈S〉 − β2

2
〈S2〉

(
ln

β

4π
− γ

)

+ a2
∞∑

n=0

(
− a2

4π2

)n
cn+1 + (u − s)cn

(2n + 1)!
Re ψ

(
2n,

1

2
+

iµ

2πT

)
. (49)

Here, ψ(n, z) is the polygamma function, the nth derivative of the digamma function
ψ(z) = �′(z)/�(z). The coefficients cn can be obtained from a generating function,

ω3

√
W

=
∞∑

n=0

cn

ω2n
. (50)
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One can now verify that the combinations cn+1 + (u − s)cn appearing in equation (49) are
related as follows to spatial averages of powers of S and its derivatives with respect to x:

c1 + (u − s)c0 = 1

2A2
〈S2〉

c2 + (u − s)c1 = 3

8A4
(〈S4〉 + 〈(S ′)2〉)

c3 + (u − s)c2 = 5

16A6

(
〈S6〉 +

1

2
〈(S ′′)2〉 + 5〈S2(S ′)2〉

)
.

(51)

This enables us to write the Ginzburg–Landau effective action in the form

�eff(γ ) = �eff(γ = 0) +
γ

2π
(S2 − 2S), (52)

where the effective action at γ = 0 is

�eff(γ = 0) = −π

6
T 2 − µ2

2π
+

1

2π
S2

[
ln(4πT ) + Re ψ

(
1

2
+

iµ

2πT

)]

− 1

26π3T 2
(S4 + (S ′)2)Re ψ

(
2,

1

2
+

iµ

2πT

)

+
1

2113π5T 4

(
S6 +

1

2
(S ′′)2 + 5S2(S ′)2

)
Re ψ

(
4,

1

2
+

iµ

2πT

)
. (53)

The instability with respect to crystallization is related to the fact that the ‘kinetic’ term ∼(S ′)2

can change sign, depending on µ and T. We will come back to this formula in section 11 where
we point out that it has a literal correspondence in condensed matter physics, namely in the
theory of inhomogeneous superconductors.

Note that if one drops all derivatives of S in the effective action, one gets the result for the
GN model under the assumption of unbroken translational invariance. The tricritical point for
instance is defined by the simultaneous vanishing of the S2 and S4 coefficients which happens
at µt = 0.608 221, Tt = 0.318 329. Since the coefficients are the same as in the full effective
action, we can understand why the tricritical point stays at the same place even though we
allow for x-dependent potentials.

7. More about the chiral limit

In [28, 32], a number of additional results have been obtained in the chiral limit γ = 0. Here,
we give a selection of figures and formulae to highlight certain features of this simpler special
case.

We first reiterate that only at γ = 0 we are dealing with three distinct phases: the crystal,
a massive and a massless Fermi gas. The scalar potential can be obtained by letting b → K in
equations (15), (19),

S̃(ξ) = κ2 sn ξ cn ξ

dn ξ
= κ2sn ξ sn(ξ + K) (54)

and has a higher symmetry than for γ �= 0, namely

S(x + �/2) = −S(x) (55)

where � is the spatial period. This is actually a remnant of the original discrete chiral symmetry
of the model. Translational invariance and the γ 5 transformation both break down, leaving
the unbroken discrete symmetry (55), i.e., a translation by half a period combined with a γ 5

transformation.
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Figure 7. Close-up on the phase boundary between homogeneous and inhomogeneous ordered
phases (κ = 1). Note the different scale on the µ-axis as compared to figure 4. From [28].
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Figure 8. Revised phase diagram of the GN model in the (T , ρ)-plane [32]. The dashed lines
belong to the old phase diagram, where they enclose the mixed phase. This ‘droplet’ region is
superseded by the crystal phase featuring baryons.

An expanded plot which reveals more details about the shape of the phase boundary
separating crystal and massive Fermi gas (labelled κ = 1) is displayed in figure 7.

A way of presenting the phase diagram complementary to that in figure 4 is given in
figure 8 where we have transformed all phase boundaries from the (T , µ)- into the (T , ρ)-
plane. Here, the first-order line of the old solution splits up into the two dashed lines which
delimit the mixed phase region (droplets of chirally restored matter in the chirally broken
vacuum). This should be replaced now by the two solid lines going downward from the
tricritical point and enclosing the crystal phase. At T = 0, in particular, the crystal phase is
stable at all densities.

As we approach the κ = 0 phase boundary, S ∼ cos 2qx (with an amplitude vanishing
at κ = 0), and the wave number q can serve as order parameter for the breakdown of
translational invariance. In figure 9, we show the dependence of this order parameter on µ as
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Figure 9. Wave number characterizing the crystal period along the phase boundary, showing a
continuous phase transition at the tricritical point µt . From [32].

one moves along the phase boundary. The solid line is the curve q = µ which is approached
asymptotically by the full calculation. At µ = µt , the tricritical point of the old solution,
we see a clear signal of a second-order phase transition with breakdown of translational
invariance.

Since the phase boundaries are of particular interest and easier to compute than other
thermodynamic quantities, let us give the explicit formulae derived in [28] from which they
can be obtained.

The boundary between the chirally restored phase and the crystal is characterized by
κ = 0. It can either be derived by almost degenerate perturbation theory [32] or from the full
thermodynamic potential. In the latter case, a straightforward expansion around κ = 0 yields

ln
1

4πT
= 1

2
min
a�0

Re

[
ψ

(
1

2
+

i

2π
(ν + a)

)
+ (a → −a)

]
. (56)

The resulting curve is labelled ‘κ = 0’ in figures 4 and 7. The asymptotic behaviour for large
µ can also be determined,

Tcrit = eC

4πµ
. (57)

The phase boundary does not reach the T = 0 axis so that chiral symmetry is not restored
at T = 0 no matter how high the density is, at variance with the naive expectation for an
asymptotically free theory.

For small ν where Re
[
ψ

(
2, 1

2 + iν
2π

)]
< 0, the unique minimum is at a = 0. In this

range of ν, the phase boundary does not touch the crystal region in the (µ, T )-diagram. It
corresponds to the transition between the massless and the massive homogeneous solutions
described by

ln
1

4πT
= Re ψ

(
1

2
+

iν

2π

)
. (58)

Upon using ψ(1/2) = −C − ln 4 (C ≈ 0.5772 is the Euler constant), we reproduce the
well-known value of the critical temperature at µ = 0,

Tc = eC

π
. (59)
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Figure 10. Self-consistent scalar potential S(x) versus x for pf = 0.3 (left) and pf = 2.5 (right).
From bottom to top: γ = 0, 0.01, 0.1, 0.3, 0.75, 2.3. From [31].

Next, we turn to the non-perturbative phase boundary at κ → 1. It separates the crystal
from the massive phase. The relation between a and ν along the phase boundary can be
deduced from

∂

∂a

1

a

∫ π/2

0
dϕ

1

cos ϕ
Im ln

�
(

1
2 + i

2π
(ν + a cos ϕ)

)
�

(
1
2 + i

2π
(ν − a cos ϕ)

) = 0. (60)

With these values for a and ν,

− ln
β

4π
+

1

π

∫ π

0
dϕ Re ψ

(
1

2
+

i

2π
(ν + a cos ϕ)

)
= 0 (61)

yields β along the phase boundary. The resulting curve is shown in the phase diagram in
figures 4 and 7 (label ‘κ = 1’). Equation (61) alone with values of (a, ν) that are not restricted
by equation (60) gives the connection between a (or, equivalently, the effective fermion mass),
ν and β in the massive phase outside the crystal region.

8. More about the zero temperature limit

Let us begin with some additional plots on cold, dense matter in the massive GN model [31].
First of all we wish to illustrate how the self-consistent scalar potential depends on γ . This
is exhibited in figure 10 at low and high densities, respectively. The deepest curves always
correspond to γ = 0, where the potential oscillates symmetrically around zero due to the
residual symmetry (55). As we increase the symmetry violation parameter γ , the potential
oscillates with decreasing amplitude around a value close to the mass M which the fermions
would acquire in the translationally invariant solution. It is surprising that such a variety of
potential shapes in the Dirac equation can all be reduced to the standard single gap Lamé
equation.
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Figure 11. Baryon density versus chemical potential [31]. Left: (unstable) translationally invariant
solution, showing a first-order transition. Right: (stable) crystal solution with second-order
transition. Curves from left to right: γ = 0.01, 0.1, 0.3, 0.75, 2.3.

The next result which we should like to show is how the density varies with the chemical
potential. At T = 0, the chemical potential can be obtained by differentiating the energy
density with respect to the mean fermion density,

µ = ∂Eg.s.

∂ρ
, ρ = pf

π
. (62)

If we assume unbroken translational invariance (figure 11, left), we find discontinuities in
these curves, confirming the result of [12] about a first-order phase transition. Repeating
the same calculation for the crystal solution (which is the stable one), all the curves become
continuous, signalling a second-order phase transition (figure 11, right). The critical chemical
potential in this latter case coincides with the baryon mass, as expected on general grounds.
By contrast, the first-order transition in figure 6 happens at a chemical potential which has at
best the meaning of an approximate baryon mass in a kind of droplet model, cf the discussion
in section 2.

The two real parameters which determine S(x) at T = 0 are the elliptic modulus κ and
the shift b. The scale factor A, on the other hand, is determined by the baryon density and κ ,

A = 2pf K
π

. (63)

Expression (63) implies that the mean density scales with the inverse spatial period of the
potential, a consequence of the fact that the valence band is completely filled (for matter) or
empty (for antimatter).

We now turn to additional analytic results. At T = 0, all integrals can be reduced to
incomplete elliptic integrals of first, second and third types F,E,�. We illustrate this fact
in the case of the ground state energy and the self-consistency conditions. The ground state
energy density is split up according to Eg.s. = E1 +E2 where E1 is the sum over single particle
energies of the occupied states, E2 is the double-counting correction to the interaction energy.
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For E1, we get

2π

A2
E1 =

(
2

E
K

− 2 + κ2 − 1

2
η

)
+

(
2

E
K

− 2 − η

)
ln

�

A
√

2 + η
+ χE(p̃, q)

+
κ2

χ

(
2

E
K

− 2 − η

)
[F(p̃, q) − �(p̃, (κ ′)2, q)]

+ χ

(
2

E
K

− 2 + κ2

)
F(p̃, q) (64)

with the following definitions (η has been defined in equation (20)):

χ =
√

1 + η, p̃ = dn b, q = κ ′/dn b. (65)

E2, on the other hand, coincides with �2 in equation (25) since the HF double-counting
correction is T-independent. After renormalization and upon using the vacuum gap equation
together with equations (28), one finds

E2 = A2

2π
(γ + ln �)(s − 1 + 2u − κ2) − A

π
γ (Z + t/s). (66)

When adding up E1 and E2, the logarithmic divergence drops out and a finite result depending
only on physical parameters is obtained.

Consider the self-consistency condition next. For γ �= 0, it can be cast into the form

0 = A cn bF(p̃, q) − γ sn2b,

γ = A cn b[κ2�(p̃, (κ ′)2, q) + χ(γ + ln(A
√

2 + η))].
(67)

The original x-dependent condition has been transformed into two x-independent equations.
They determine κ and b for given pf and γ .

We finish this section with a few words about the high-density limit where the calculation
becomes perturbative (see [31]). We use almost degenerate perturbation theory, following the
standard weak coupling approach from solid state physics textbooks. In the double-counting
correction, we have to take into account the bare fermion mass, and we allow for S0 �= 0 in
addition to S±1 �= 0 (S� are the Fourier components of the periodic potential S(x)). Thus, our
present ansatz for S(x) is

S(x) = S0 + 2S1 cos(2pf x). (68)

The approximate energy density becomes

Eg.s. = −�2

8π
+

p2
f

2π
+

S2
0

2π
ln(2pf ) +

γ

2π

(
S2

0 − 2S0
) − S2

1

4π
+

S2
1

4π
ln(4pf S1) +

γ

π
S2

1 . (69)

Minimizing with respect to S0 and S1, we find

S0[ln(2pf ) + γ ] − γ = 0, S1[2γ + ln(4pf S1)] = 0. (70)

The first equation has the unique solution

S0 = γ

γ + ln(2pf )
. (71)

The second equation has two solutions: S1 = 0, corresponding to unbroken translational
invariance, and

S1 = 1

4pf

e−2γ (72)

for the soliton crystal. Comparing the energy densities of these two solutions,

Eg.s.(S1 �= 0) − Eg.s.(S1 = 0) = − 1

64πp2
f

e−4γ , (73)
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we learn that the crystal is favoured, but the energy difference decreases rapidly with
increasing γ . We have shown this simple calculation in detail since it proves non-restoration
of translational invariance at high density for arbitrary bare fermion mass.

9. More about the double limit T = 0, γ = 0

The simplest problem beyond individual baryons and the first one which could be solved
analytically [33] is the ground state of baryonic matter in the chiral limit. The ansatz
for the reduced HF potential has the form (54), whereas the scale factor A is given by
equation (63). Thus, only a single variational parameter κ is left. As expected, all analytical
formulae of the previous section simplify tremendously in the chiral limit. Thus, for instance,
the renormalized ground state energy density can now be expressed entirely in terms of
complete elliptic integrals

Eg.s. = p2
f K

π3
(4E + (κ2 − 2)K) +

2p2
f K

π3
(2E + (κ2 − 2)K) ln

(
π

2pf κK

)
. (74)

Minimizing with respect to κ yields the transcendental equation

κ = a

�
= π

2pf K
, (75)

and self-consistency can be ascertained rather easily in this case. Eliminating pf from Eg.s.

with the help of relation (75), we arrive at the following parametric representation of the
ground state energy as a function of density in terms of the parameter κ:

Eg.s. = 1

4π
+

1

πκ2

(
E
K

− 1

2

)
, (76)

pf

π
= 1

2κK
. (77)

In the low- or high-density limits, it becomes possible to systematically resolve the
transcendental equation (77),

κ ≈
pf →0

1 − 8 e−π/pf +
32(π + pf )

pf

e−2π/pf ,

κ ≈
pf →∞

1

pf

− 1

4p3
f

+
3

64p5
f

.

(78)

For the energy as a function of density, one then finds

Eg.s. ≈
pf →0

− 1

4π
+

2pf

π2
+

8pf

π2
e−π/pf ,

Eg.s. ≈
pf →∞

p2
f

2π
− 1

26πp2
f

+
3

214πp6
f

.

(79)

In the low-density limit, the three terms correspond to the vacuum energy density, the
contribution from the baryon mass (∼ρMB with MB = 2/π ) and a term reflecting the repulsive
baryon–baryon interaction. At high densities, we can identify the free massless Fermi gas
piece, the leading perturbative correction [32] and the next term coming from higher order
effects, suggesting fast convergence.
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We end this section with a few remarks about the baryon density. In the present case, the
exact density is x-dependent and given by

ρ(x) = 1

2κK
− K′

2πκ
(S̃2(x/κ) − 〈S̃2〉). (80)

It has the following high and low-density limits: at low density (κ → 1), we recover the result
for a single baryon

ρ(x, κ → 1) ≈ 1

4 cosh2 x
+

1

4 cosh2(x/κ + K)
. (81)

At high density (κ → 0), the total baryon density approaches a constant,

ρ(x, κ → 0) ≈ 1

2κK
, (82)

unlike the scalar potential which keeps oscillating around 0 with wave number 2pf .

10. A note on baryons

Single baryons are contained in the low temperature, low-density limit of the general
formalism, at least those with completely filled or empty valence state. They have also
been studied as such, first in the chiral limit [8] and more recently in the massive GN model
[19, 20]. One finds that the scalar potential has the same shape as the m0 = 0 baryon with
partial filling of the valence level,

S(x) = 1 + y(tanh ξ− − tanh ξ+) (83)

with

ξ± = yx ± 1
2 artanhy, (84)

where m = 1 and y ∈ [0, 1] is the only variational parameter. It depends on the occupation
of the pair of valence levels and γ . Evaluating the ground state energy MB and varying with
respect to y,

∂MB

∂y
= 0, (85)

one obtains

ν

2
= θ

π
+

γ

π
tan θ (86)

where we have introduced the angle θ via y = sin θ (0 � θ � π/2). Here, ν is the number of
valence particles minus the number of holes in the negative energy valence state. The baryon
mass at the minimum becomes

MB

N
= 2

π
[sin θ + γ artanh(sin θ)]. (87)

The phase boundary in the T = 0 plane of figure 5 perfectly agrees with the function MB(γ )

evaluated from equations (86), (87) for ν = 1. This was not the case in the old phase diagram
of figure 2, confirming once again that the revised results are now internally consistent.
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11. Relation to condensed matter physics

From the point of view of relativistic QFT, the GN model is viewed as a soluble model for
strong interaction physics, exhibiting phenomena such as asymptotic freedom, chiral symmetry
breaking, dynamical mass generation, meson and baryon bound states. On the other hand,
it can model quasi-one-dimensional condensed matter systems in the vicinity of a half-filled
band. In this context, it has enjoyed success in explaining real experimental data, something
unthinkable in particle physics due to its toy model character. The two most striking examples
which we are aware of are conducting polymers on the one hand and (quasi-one-dimensional)
inhomogeneous superconductors on the other hand. The basic physics is the same in both
cases and closely related to the Peierls effect [34] of a one-dimensional electron–phonon
system—dynamical formation of a gap at the Fermi surface resulting in a crystal structure.
Details are different though, in particular the identification of the chemical potential is more
subtle in the second case. Since the relationship between the GN model and condensed matter
systems has played an important role for establishing the phase diagram of the GN model
during the last few years, let us discuss it in somewhat more detail.

11.1. The GN model and polyacetylene

Conducting polymers have had a tremendous success story, culminating in the 2000 Nobel
Prize in chemistry for physicist A J Heeger and the chemists A G MacDiarmid and H Shirakawa
(for a review, see [35]). A prominent example is trans-polyacetylene (PA). This polymer (CH)x
possesses two ‘dimerized’, degenerate ground states with alternating short and long bonds
(figure 12, left). Owing to a number of simplifying assumptions, its continuum description is
mathematically equivalent to the symmetric (m0 = 0) GN model, as was realized shortly after
the seminal work of Su, Schrieffer and Heeger on the discrete model [9, 36–38]. Dimerization
plays the role of (discrete) chiral symmetry breaking in relativistic QFT. Solitons appear
as kink-like defects where a transition between the two degenerate ground states happens,
polarons are kink–antikink bound states. These excitations are important for understanding
the electrical conductivity properties of doped PA (doping changes the number of electrons
and is analogous to changing baryon number in the GN model). The solitons in particular
have attracted considerable attention in the context of fermion number fractionization of
which they are a prime example [39–41]. Solitons and polarons have originally been analysed
theoretically in close analogy with kink and kink–antikink baryons already known on the field
theory side [8]. A good account of both the physics and the early history can be found in
[42], where also the limitations of the equivalence between the GN model and the theory of
PA are critically examined. More recently, this theme has been taken up again by others [43].
Here, let us only mention a few facts which help to understand the curious equivalence of a
non-relativistic electron–phonon system with a relativistic QFT. Particle/antiparticle degrees
of freedom correspond to particles and holes, the half-filled band to the Dirac sea. The role
of the UV cut-off is taken over by the band width W (incidentally of the order of 10 eV in
PA). The two spin components (which exist only in the condensed matter case) are mapped
onto two flavours (i.e., the N = 2 GN model). In the widely used semi-classical approach,
there is no difference between the condensed matter treatment and the large N limit used
above. The linear (‘ultra-relativistic’) dispersion relation for the massless fermions arises
from a linearization at the Fermi surface, the Fermi velocity playing the role of the velocity
of light. The lattice distortion (or phonon) field in the adiabatic approximation corresponds
to the auxiliary scalar field σ in the GN model, the gap parameter �(x) to the scalar potential
S(x) and the electron–phonon coupling λ to the coupling constant Ng2. In the relativistic
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Figure 12. Left: two degenerate, dimerized ground states (a) and (b) of trans-PA, described
theoretically in terms of the massless GN model. Right: two inequivalent configurations of cis-PA,
leading to a description in terms of the massive GN model. Configuration (c) has lower energy
than (d ).

QFT case, one has to send the UV cut-off to infinity and the bare parameter Ng2 to 0 in a
specific way, dictated by the renormalizability of the model. In polymer physics, W and λ are
physical observables to be taken from experiment. Nevertheless, in practice, these differences
do not matter for many questions.

As mentioned above, the kink baryons are the solitons, the kink–antikink baryons the
polarons, bipolarons and excitons of polymer physics. More specifically, for N = 2 the
valence level can only be empty, fully occupied or half occupied. In condensed matter
physics, there is then a relation between charge and spin. For the questions discussed in
the present paper, fully occupied or empty valence levels are most relevant—these should be
identified with the bipolarons. In the massless GN model, the baryon with fully occupied
valence level becomes a kink/antikink at infinite separation; this is the reason why bipolarons
are not discussed in the case of degenerate polymers like trans-PA.

If one starts to think about the massive GN model, it is not too hard to identify its condensed
matter analogue: conducting polymers with non-degenerate ground states like cis-PA
(figure 12, right). Their theoretical description was initiated by Brazovskii and Kirova [44]
with the proposal that the gap parameter has two contributions, a constant, ‘external’ one
arising from the basic structure of the polymer and an x-dependent, ‘internal’ one due to
electron–phonon coupling,

�(x) = �e + �i(x). (88)

If we identify �(x) with the scalar mean field S(x) and �e with the bare mass m0, we can
immediately relate two problems from two different branches of physics. Baryons in the
massive GN model then correspond to polarons and bipolarons in the polymer case [19, 42].

Now consider periodic solutions of the gap parameter for both degenerate and non-
degenerate polymers and compare them with relativistic QFT. In the degenerate polymer case,
polaron crystal solutions to the continuum model (at T = 0) have been found and discussed
in [45–47]. They are mathematically identical to the ground state of baryonic matter in the
chirally symmetric GN model, cf section 9. In some cases, the order parameter looks different
from ours at first sight. However, the two expressions can be converted into each other by
Landen’s transformation for Jacobi functions in the form

κ
sn(ξ, κ)cn(ξ, κ)

dn(ξ, κ)
= 1 − κ ′

κ
sn

(
(1 + κ ′)ξ,

1 − κ ′

1 + κ ′

)
. (89)
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In the 1980s and 1990s, a lot of work was devoted to non-degenerate conducting polymers with
the result that exact bipolaron lattice solutions were found by several groups. This suggests
that the massive GN model should exhibit a soliton crystal at finite baryon density as well. It
encouraged us to look for such solutions of the massive GN model and to try the functional
form of the self-consistent scalar potential for non-degenerate polymers in the GN model. It
has been derived by various methods such as inverse spectral theory [48], Poisson summation
of periodic sums of single polarons [49–51] or relation to the Toda lattice [23]—a rich source
of inspiration also for those working on relativistic QFT. Reference [24] contains a particularly
thorough discussion and corrects misprints in some of the original papers. In section 3, we
have in fact presented the functional form determined in these works and used it as ansatz in
a relativistic HF calculation. The arguments given in favour of this ansatz are also borrowed
from the condensed matter literature. On the other hand, we did not find the full phase diagram
at finite T presented in section 5 in the polymer literature.

11.2. The GN model and inhomogeneous superconductors

Superconductivity is driven by fermion–fermion pairing (Cooper pairs), whereas the GN model
features fermion–antifermion pairing (chiral symmetry breaking). We first have to understand
how these two distinct physical phenomena are related to each other. Along the lines described
in [52], one can actually map the GN Lagrangian onto a ‘dual’ Lagrangian which has fermion–
fermion pairing by means of a canonical transformation. In the relativistic case, this is possible
due to a two-dimensional remnant of the Pauli–Gürsey symmetry of massless fermions [53, 54]
and explains why two seemingly different large N field theory models give identical results
[55]. All one has to do is redefine particles into antiparticles for left-handed fermions only. If
one works at non-zero chemical potential, a baryonic chemical potential µ in the GN model
corresponds to an ‘axial’ chemical potential µ5 in the dual BCS-type model. The phase
diagram which we have discussed in section 5 (for m0 = 0) is equivalent to the phase diagram
of a theory with Lagrangian

L =
N∑

n=1

ψ̄(n)i∂/ψ(n) +
g2

2

[
N∑

n=1

(
ψ

(n)†
R ψ

(n)†
L + ψ

(n)
L ψ

(n)
R

)]2

, (90)

provided we reinterpret the chemical potential µ = µR + µL as axial chemical potential
µ5 = µR − µL. The kink–antikink phase of the GN model can then be identified with
the Larkin–Ovchinnikov–Fulde–Ferrel (LOFF) phase [56, 57] of the dual model. Such
inhomogeneous superconductors have recently attracted considerable attention in the context
of QCD (for a review article, see [58]).

Let us now turn to non-relativistic condensed matter physics and demonstrate that the
GN model can also be related to quasi-one-dimensional superconductors in nature. In 1981,
Mertsching and Fischbeck addressed the quasi-one-dimensional Peierls–Fröhlich model with
a nearly half-filled band, an electron–phonon system [59]. This is the same basic model
as the continuum model for degenerate polymers [9], but here the phase diagram at finite
temperature was considered, notably the transition between commensurate–incommensurate
charge density waves. Comparing with our results at m0 = 0, we find a mathematical one-to-
one correspondence between this system and the GN model now extended to finite temperature.
The authors of [59] have also found the analytic solution to the mean-field equation, guided by
the Landau expansion around the triple point (which is called Leung point [60] in this context).

In a subsequent paper, Machida and Nakanishi [61] used the phase diagram of [59] in a
different physics context: they studied the interplay of superconductivity and ferromagnetism
in ErRh4 B4 (erbium–rhodium–boride). They managed to reduce this problem mathematically
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to the Peierls–Fröhlich model. For real order parameter, their results are again fully equivalent
to ours for the GN model, except that now one has to use another dictionary: the Dirac equation
corresponds to the Bogoliubov–deGennes (BdG) equation, flavour (N = 2) to spin (which
exists in a quasi-one-dimensional world), chemical potential to magnetic field, baryon density
to spin polarization. Our three phases (massive, crystal and massless) correspond to their BCS,
‘sn’ and normal phases, respectively. Not only the phase boundaries, but all observables can
be identified if one keeps in mind the above-mentioned dictionary. Let us try to understand
in more detail the reasons behind this remarkable correspondence. The BdG Hamiltonian
involves four fermion fields, namely right (ψs) and left (φs) moving electrons with spin up
(s = +) and spin down (s = −). This Hamiltonian can be mapped onto the Peierls–Fröhlich
Hamiltonian by the canonical transformation


ψ+

ψ−
φ+

φ−


 −→




ψ+

ψ
†
−

φ−
φ
†
+


 , (91)

i.e., particle hole conjugation for spin-down fields followed by a spin-flip of left-moving fields.
Under this transformation, spin density goes over into ordinary fermion density, and one can
understand all other relationships as well.

Finally, we would like to mention the more recent work of Buzdin and Kachkachi [62].
They derive the Ginzburg–Landau theory for nonuniform LOFF superconductors near the
tricritical point in the (T ,H)-phase diagram in one, two and three dimensions. If we take their
result for one dimension and specialize it to a real order parameter, we find perfect agreement
between our equation (53) and their equation (3) in appropriate units. Once again we have to
identify their magnetic field H0 with our chemical potential µ for the reasons discussed above.

12. Concluding remarks

At the time of writing our previous review article on the thermodynamics of two-dimensional
quantum field theories [5], some progress had been made on fermionic models with continuous
chiral symmetry like the ’t Hooft or the NJL2 model. The fact that the existence of
baryons implied a crystal structure of baryonic matter had been understood and the physical
interpretation in terms of a gap at the Fermi surface—the ‘rediscovery of the Peierls effect in
relativistic QFT’—had been clearly stated. Towards the end of this paper, we identified areas
where future work was needed, mentioning in particular the GN model with discrete chiral
symmetry. We hope to have shown in the present work that this problem has been solved
in the meantime, including the generalization to the massive model with explicit symmetry
breaking. As a result, the situation is now reversed: today we know a lot more about the
thermodynamics of the discrete chiral GN model than about the NJL2 model, particularly in
the presence of a bare mass term. For a long time, the phase diagram of the NJL2 model was
thought to be identical to that of the GN model, but this can now be ruled out due to their
different baryon structure. It will be interesting to see whether one can make further progress
on the phase diagram of the massive NJL2 model where topology is expected to play a crucial
role, analogous to the Skyrme model and Skyrme crystal in 3 + 1 dimensions.

In [5], we also pointed out that this type of soluble QFT models still had the potential
to surprise us after so many years of studies. If anything, this impression has only been
reinforced since then. The simple Lagrangian (1) has generated a much richer phase diagram
than previously thought, together with some beautiful mathematics. Even more surprising for
us was perhaps the discovery that a relativistic QFT ‘toy model’ has such a close relationship
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to various quasi-one-dimensional condensed matter systems. We have tried to cover these less
familiar aspects of the GN model in the present work as well. They represent a good example
for a fruitful exchange between condensed matter and particle physics. Originally, condensed
matter physics, in particular polymer physics, could profit of the particle physicists know-how
on soliton-like baryons in the GN model to understand for instance electrical conductivity
properties. Subsequently, the polymer continuum models were vigorously developed, notably
in the direction of crystal solutions where the expertise has traditionally been residing in
condensed matter physics. During our work, we were able to take advantage of the progress in
polymer physics to settle some unresolved issues in QFT, while at the same time generalizing
the bipolaron lattice to finite temperature.

This whole process was not as straightforward as it may sound. It was not that easy for
us to find the relevant information in the unfamiliar literature where it was often hidden under
a lot of material of less interest to us. Thus, we could not avoid doing many things ‘the hard
way’. For example, the calculation of the phase diagram in the chiral limit, first numerically
and then analytically, was performed by us independently of already existing pertinent results
in the ‘parallel world’ of condensed matter physics. In any case, our study of the massive
model has profited immensely from this interplay, and it was better to realize and exploit the
relationship between these two different branches of physics late than never.
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